Getting Started with IPv6 on the Mainframe

Part 2 of 2

NALINI ELKINS

INDUSTRY NETWORK TECHNOLOGY COUNCIL

PRESIDENT@INDUSTRYNETCOUNCIL.ORG

ROB HAMILTON

CHEMICAL ABSTRACTS SERVICES

RHAMILTON@CAS.ORG

Collaborative Project

 India Internet Engineering Society (IIESoc) and Industry Network Technology Council (INTC)

 Past Funding: Grant from ISIF Asia (APNIC Foundation), ARIN Community Grants

Thank you!

https://www.iiesoc.in/

https://industrynetcouncil.org/

Vision

Multi-year project: IPv6 deployment at enterprises.

Provide training,

Analysis of security and application conversion,

Help enterprises plan their IPv6 deployment.

Classes

- Getting Started with IPv6 on the Mainframe : Part 1: November 4, 2021
- Getting Started with IPv6 on the Mainframe : Part 2: November 18, 2021
- IPv6 and Evolving 5G Deployments: December 16, 2021

2022

- IPv6 and IoT (multiple sessions)
- More IPv6 security
- IPv6 and DDI (DNS, DHCP, IPAM) (two sessions)
- Internet Standards Bodies
- IPv6 case studies

A few words about me

- President: Industry Network Technology Council
- Founder & CEO: Inside Products, Inc.
- Advisory Board: India Internet Engineering Society
- RFCs: RFC8250 (Embedded performance and diagnostics for IPv6) and others
- Product developer (OEMed by IBM and others)
- Working with IPv6 for 15 years
- Working with network management, diagnostic, performance issues at large brick-and-mortar enterprises for over 30 years

A few words about Rob

- Rob started programming mainframe computers in 1971, and learned an exceptional array of languages, tools and techniques, all without internet assistance.
- He did some dazzling database work in the `80s and wrote over half of the first online registration system for the University of Toledo.
- In the '90s he did contracts with three oil companies, a software company and a credit bureau, involving VM, MVS, VSE, OS/2, several flavors of Unix, and an equal variety of networking protocols.
- He is now with Chemical Abstracts Service, a division of the American Chemical Society, supporting z/OS, z/VM and Linux, along with proprietary networking software.
- He has been involved with and a fan of IPv6 since early this century, performing the configuration and software upgrades required to support it on the mainframe.
- He happily notes that the mainframe was the first platform configured for it, with applications using IPv6 sockets exclusively.
- Rob is also co-author of RFC8250.

Let's Get Started with Migrating to IPv6: z/OS

CAS has the most comprehensive collection of connected science

	ACTIVE PHARMA IN	NGREDIENT	COSMETIC FOR	MULATIONS	
INFRARED DATA	ANALYTICAL METH	HODS PROTOCO	LS GLOBAL RE	GULATIONS	SPECTRAL DATA
STRUCTU	RESREACTIONS	6 PHARMA	COLOGY / TOXIC	OLOGY P	ROCESSES
STRUCTURE-ACTIVITY	-RELATIONSHIP	PROPERTIES		INGRED	IENT FUNCTIONS
DNA / RNA	SEQUENCES	MARKUSH	DISEASES	UVCB SUBS	TANCES
NMR DATA	FORMULATIONS		TYPES POL	YMER PROPER	RTIES
MASS SPEC DATA	BIOMOLECULE	ISOLATION	TARGETS	RICULTURE FO	RMULATIONS
F	ROTOCOLS OR	GANOMETALLIC	5 / INORGANICS	BIOASSAY	S

Over 50K

Over 250

scientific journals and documents

million substances

Over

languages translated patent offices worldwide

64

Let's Get Started with Migrating to IPv6: z/OS Phase II

Migrating to IPv6: z/OS DISCLAIMERS

- These are the steps I took in upgrading my z/OS IP stacks to use IPv6, generalized to make them look better. Your network may (most likely will) be different. The steps in these presentations will either get you there or get you well along on your migration journey. Your mileage may vary.
- As always, the IP addresses here that aren't publicly available have been changed, along with the names of other configurable items and hardware, to protect the guy who wrote this.

Here's What We Covered in Phase I:

- -z/OS:
 - Planning
 - Enabling IPv6 Sockets
 - Configuring Name and Address Resolution

This is what is left to do:

-z/OS:

- Configuring IPv6 Communications Components
 - Configure OSA INTERFACEs
 - Configure HiperSockets INTERFACEs
 - Configure primary and application VIPAs
 - Configure the IP side of Enterprise Extender

Configuring IPv4/IPv6 Routing

What do we have to do: Configure TCP/IP for IPv6

Configure IPv6 Communication Components

There are thirteen (13) statements you can use in your TCP/IP Profile for configuring IPv6...

I only needed three: IPCONFIG6 INTERFACE BEGINROUTES(/ENDROUTES)

What do we have to do: Configure TCP/IP for IPv6

- To configure IPv4 communications you can use: DEVICE LINK HOME
- You need all three to configure an IPv4 interface in "ye olde style":

What do we have to do: Configure TCP/IP for IPv6

To configure IPv4 communications you can use:

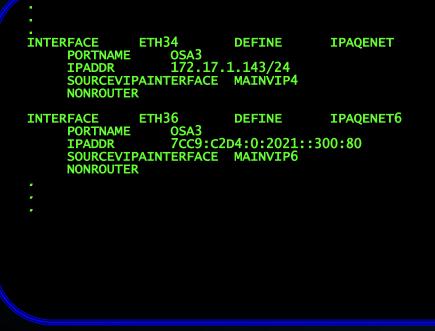
-				
DEVICE LINK	OSA3 ETH34	MPCIPA IPAQENET	NONROUTER OSA3	
HOME				
your.i	p.add.re	255		

What do we have to do: Configure TCP/IP for IPv6

- To configure IPv6 communications you use: INTERFACE
- This one statement defines everything you need for IPv6, short of the routing:
 Interface name

 - The PORTNAME specification from the VTAM TRLE
 - The IP address
 - The CHPID, for a HiperSockets network
 - Other IP characteristics, like SOURCEVIPAINT, SMCD and NONROUTER

What do we have to do: Configure TCP/IP for IPv6


To configure IPv6 communications you use:

DEVICE LINK	OSA3 ETH34	MPCIPA IPAQENET	NONROUTER OSA3	
	ORTNAME	ETH36 OSA3	DEFINE	IPAQENET6
S	PADDR OURCEVIP/ ONROUTER	7CC9:CAINTERFACE	2D4:0:2021::3 MAINVIP6	00:80
-				

What do we have to do: Configure TCP/IP for IPv6

- What's really nice is:

What do we have to do: Configure TCP/IP for IPv6

To configure HiperSockets, it's similar:

DEVICE IUTIQD17 MPCIPA AUTORestart LINK HPSCETH17 IPAQIDIO IUTIQD17 INTERFACE HS17ETH6 DEFINE IPAQIDIO6 CHPID 17 IPADDR 7CC9:C2D4:FFFF:17::1:880 SOURCEVIPAINTERFACE HS17VIP6 :

> CAS A division of the American Chemical Society

What do we have to do: Configure TCP/IP for IPv6

Or, better:

INTER	RFACE CHPID IPADDR SOURCEVIF		17 172.17.1.	DEFINE 20/24 IS17VIP4	IPAQIDIO
INTER	RFACE CHPID	HS17	ЕТН6 17	DEFINE	IPAQIDI06
	IPADDR SOURCEVIE		7cc9:c2D4	:FFFF:17::1: S17VIP6	880

What do we have to do: Configure TCP/IP for IPv6

Configuring primary VIPAs:

MAINVIP4/MAINVIP6 are the main VIPAs for this system

These two VIPAs need to be configured first, before interfaces that might reference them

INTERFACE IPADDR	MAINVIP4 172.17	VIRTUAL
INTERFACE IPADDR	MAINVIP6 7CC9:C	

What do we have to do: Configure TCP/IP for IPv6

Configuring application VIPAs:

;;;;;	virtual IP ac	dress defin	ition for J	E92M51S
	INTERFACE IPADDR	M51SVIP4 172.17		VIRTUAL
	INTERFACE IPADDR	M51SVIP6 7CC9:C	DEFINE 2D4:0:2021:	VIRTUAL6 :8040

What do we have to do: Configure TCP/IP for IPv6

Configuring Enterprise Extender (IUTSAMEH):

Enterprise Extender configurables

SAMEHOST device for Enterprise Extender IUTSAMEH represents an internal connection to VTAM MPCPTP6 is the corresponding IPv6 interface type

Note that all IUTSAMEH connections are on the same subnet

INTERFACE MAINEEV6 DEFINE VIRTUAL6 IPADDR 7CC9:C2D4:FFEE:5::490

DEVICE IUTSAMEH MPCPTP LINK EELINK4 MPCPTP IUTSAMEH

INTERFACE EELINK6 DEFINE MPCPTP6 TRLENAME IUTSAMEH SOURCEVIPAINTERFACE MAINEEV6

What do we have to do: Configure TCP/IP for IPv6

Dynamic TRLEs – HiperSockets and IUTSAMEH:

= ISM ISM = MPC = MPCISM ISM ISM = ISM = MPC = MPC = MPC = MPC= MPC= MPC= MPC= MPC

D NET, ID=ISTTRL, E		
IST097I DISPLAY ACCEPTED		
IST075I NAME = ISTTRL, TY	PE = TRL MAJOR NODE	
IST1314I TRLE = IUT00062	STATUS = ACTIV	CONTROL
IST1314I TRLE = IUT01350	STATUS = ACTIV	CONTROL
IST1314I TRLE = IUTIQDD3	STATUS = ACTIV	CONTROL
IST1314I TRLE = IUTIQ4D3	STATUS = ACTIV	CONTROL
IST1314I TRLE = IUT00024	STATUS = ACTIV	CONTROL
IST1314I TRLE = IUT01150	STATUS = ACTIV	CONTROL
IST1314I TRLE = IUT01050	STATUS = ACTIV	CONTROL
IST1314I TRLE = IUT01550	STATUS = ACTIV	
IST1314I TRLE = IUTIQDD5	STATUS = ACTIV	CONTROL
IST1314I TRLE = IUTIQ4D5	STATUS = ACTIV	CONTROL
IST1314I TRLE = IUTIQDD1	STATUS = ACTIV	CONTROL
IST1314I TRLE = IUTIQ4D1	STATUS = ACTIV	CONTROL
IST1314I TRLE = IUTIQDD0	STATUS = ACTIV	CONTROL
IST1314I TRLE = IUTIQ4D0	STATUS = ACTIV	CONTROL
IST1314I TRLE = IUTIQDIO	STATUS = NEVAC	CONTROL
IST1314I TRLE = IUTSAMEH	STATUS = ACTIV	CONTROL
IST314I END		

What do we have to do: Configure TCP/IP for IPv6

-IUTSAMEH TRLE:

D NET, ID=IUTSAMEH, E IST097I DISPLAY ACCEPTED IST075I NAME = IUTSAMEH, TYPE = TRLE IST486I STATUS= ACTIV, DESIRED STATE= ACTIV IST087I TYPE = LEASED, CONTROL = MPC , HPDT = YES IST1954I TRL MAJOR NODE = ISTTRL IST1715I MPCLEVEL = HPDT MPCUSAGE = SHAREIST1717I ULPID = TCPIP0 ULP INTERFACE = *NA* IST1717I ULPID = EEXCAM4 ULP INTERFACE = *NA* IST1717I ULPID = TCPIP1 ULP INTERFACE = *NA* IST1500I STATE TRACE = OFF IST314I END

What do we have to do: Configure TCP/IP for IPv6

- EE XCA Major Node:

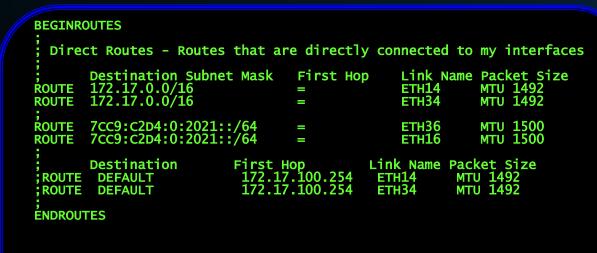
D NET,ID=EEXCAM4,E
IST097I DISPLAY ACCEPTED
IST075I NAME = EEXCAM4, TYPE = XCA MAJOR NODE
IST486I STATUS= ACTIV, DESIRED STATE= ACTIV
IST1679I MEDIUM = HPRÍP
IST1685I TCP/IP JOB NAME = TCPIP1
IST924I
IST089I EEHSGRP TYPE = LINE GROUP , ACTIV
IST1680I LOCAL IP ADDRESS 192.172.1.213
IST1910I LOCAL HOSTNAME M24JVV4.CAS.ORG
IST924I
IST089I EEHSGP6 TYPE = LINE GROUP , ACTIV
IST1680I LOCAL IP ADDRESS 7CC9:C2D4:FFFF:B4::40
IST1910I LOCAL HOSTNAME M24JVV6.CAS.ORG
IST924I
IST089I EEOSAGRP TYPE = LINE GROUP , ACTIV
IST1680I LOCAL IP ADDRESS 172.17.1.143
IST1910I LOCAL HOSTNAME MAINFRAME24JV4.CAS.ORG
IST924I
IST0891 EEOSAGP6 TYPE = LINE GROUP , ACTIV
IST1680I LOCAL IP ADDRESS 2620:10:A000:69::40
IST1910I LOCAL HOSTNAME M24JV6.CAS.ORG
IST9241

What do we have to do: Configure TCP/IP for IPv6

Routing for z/OS

- Support for the GATEWAY statement was removed in z/OS V2R2
- You must use BEGINROUTES and ENDROUTES
- GATEWAY is still supported in z/VM as the statement that defines the routing table

What do we have to do: Configure TCP/IP for IPv6


This is what the GATEWAY syntax looked like:

GATEWAY ; Network FirstHop LinkName PacketSize Subnet Mask Subnet Value 172.17 = ETH3 1492 0.0.255.0 0.0.100.0 172.17 = ETH1 1492 0.0.255.0 0.0.100.0 ; Default Route - All packets to an unknown destination are routed through these routes. Destination First Hop Link Name Packet Size ; DEFAULT 172.17.100.254 ETH1 1492 0 ; DEFAULT 172.17.100.254 ETH3 1492 0
DEFAULT 172.17.100.254 ETH1 1492 0

What do we have to do: Configure TCP/IP for IPv6

The analogous BEGINROUTES looks like this:

Migration: Timeline

[–]May, 2005:

US Office of Management and Budget (OMB) instructs federal agencies to "begin addressing key IPv6 planning considerations."

-August, 2005:

A guidance was issued by the General Accounting Office (GAO) that included a deadline of June 2008 for all government agencies to convert their network backbones to IPv6.

Migration: Timeline – Beginning

[–]April, 2008:

Began experimenting with enabling IPv6 sockets in BPXParms

-September, 2008:

Began working on the program updates required to use IPv6 sockets.

Migration: Timeline – Configuration Complete

February, 2012: All stacks configured to use IPv6

Primary Production z/OS system:

- IPv6 sockets enabled in BPXParm in February, 2010
- IPCONFIG6 added to TCP/IP Profile at the end of 2009
- IPv6 INTERFACEs configured and routing added to primary stack in November, 2011; to the secure stack in February, 2012
- All IPv4 DEVICE/LINK/HOME specifications changed to INTERFACEs in August/September, 2017

Migration: Timeline – Software Migration Complete

Socket-Management API

- Originally consisted of 13 API routines
 - Encapsulates all socket calls (EZASMI)
- IPv6 implementation began in September, 2008
 - When development began there were 17 routines
- IPv6 development complete by December, 2010
 - Some tweaking/improvements until August, 2012
 - When development complete, there were 24 routines

Migration: Timeline – Software Migration Complete

Application: Telnet Server

- A front-end to a legacy product
- Development began in February, 2011
- Development complete in March, 2014
 - Message-handling and other changes made; this was actually a massive upgrade
 - Later changes made to the GateWay product were implemented here as improvements
 - The actual IPv6 implementation took about six months, thanks to the IPv6 encapsulation in the Socket API



Migration: Timeline – Software Migration Complete

Application: IP GateWay

- Encapsulates our proprietary network protocol in TCP sockets
- Development began in July, 2012
- Development complete in February, 2014
 - Again, this was a big upgrade, including the same message-handling and other changes made to the Telnet server
 - The IPv6 implementation was even faster than with the Telnet server, thanks to the lessons learned there

Here's What We've Covered:

z/OS:

- Planning
- Enabling IPv6 Sockets
- Configuring Name and Address Resolution
- Configuring IPv6 INTERFACEs and Enterprise Extender
- Configuring IPv4/IPv6 Routing

Questions?

Thank you!!!

