
Fundamentals of Cryptography:
Session 3

NALINI ELKINS

INDUSTRY NETWORK TECHNOLOGY COUNCIL

PRESIDENT@INDUSTRYNETCOUNCIL.ORG

▪ President: Industry Network Technology
Council
▪ Founder & CEO: Inside Products, Inc.
▪ Advisory Board: India Internet Engineering
Society
▪ RFCs: RFC8250 (Embedded performance
and diagnostics for IPv6) and others
▪ Product developer (OEMed by IBM and
others)
▪ Working with IPv6 for over 20 years
▪ Working with network management,
diagnostic, cryptography, performance
issues at large brick-and-mortar
enterprises for over 30 years

A few words about me

Details:
▪ DES
▪ 3DES
▪ Asymmetric encryption / symmetric
encryption
▪ Elliptic curve cryptography
▪ Certificate authority
▪ Diffie-Hellman key exchange
▪ Diffie-Hellman groups
▪ Hashed message authentication code (HMAC)
▪ HMAC MD5
▪ HMAC_SHA
▪ Message authentication code (MAC)
▪ Message digest algorithm 5 (MD5)
▪ Rivest Shamir Adleman (RSA)
▪ Secure hash algorithm 1 (SHA1)
▪ X.500 distinguished name
▪ X.509 digital certificate

Fundamentals of Cryptography

https://www.iiesoc.in/ https://industrynetcouncil.org/

Concepts
▪ Block cipher
▪ Encryption
▪ Hash
▪ Keys
▪ Public / private keys
▪ Tags

Issues
▪ Key sizes
▪ Choice of protocol
▪ End-to-end security

We have gone
over this in the
last two sessions.

This session’s agenda

▪ Pull things together

▪ Set the stage for the next webinars

▪ Discuss implications of quantum computing

Pull things together

▪ Cryptographic concepts: hashing, signing, keys, etc. are
implemented in protocols

▪ How?

▪ Protocols are used to secure and transmit traffic. For
example:
▪ TLS
▪MLS
▪ SSH
▪ IPSec

TLS: Start

▪ NIST standardizes ciphers:
▪ Symmetric (AES, DES – deprecated)

▪Asymmetric (RSA, Diffie-Hellman, ECC, etc)

▪ IETF standardizes protocols – TLS
▪Packet exchanges

▪ Format of handshake

▪ Format of data packet

▪ Security analysis

TLS: Middle

▪ Packet format, protocol exchanges, cipher suites are
implemented in libraries. For example:
▪ OpenSSL
▪MBedTLS
▪ BouncyCastle

Note: Protocols can be embedded in other protocols. For
example, DNS over HTTPS (DoH) embeds TLS.

▪ Libraries are called by programs. Programs are coded in
languages which are (generally) compiled. For example:
▪ Java
▪ C, C++, C#

TLS: End

▪ Programs can be:
▪ Applications
▪ Services (web servers, database servers, proxies, etc)

▪ Implementation can be:
▪ Software
▪ Hardware

▪Platform can be:
▪Windows
▪ Linux
▪Mobile
▪ IoT
▪Mainframe

TLS: Ongoing Operation

▪ What happens when there is a problem between client and server?
(Mismatch in cipher suites / versions)

▪ What happens when a vulnerability is found?

▪ TLS is embedded and can be used by middle boxes
▪ IDS / IPS

▪ Firewalls

▪ Bulk data packet capture tools

This is the
only part
many
enterprises
see or know
about.

TLS: Ongoing Operation

▪ Hackers / terrorists, etc. (try to find
vulnerabilities)

▪ Academia:
▪ Try to find vulnerabilities before hackers

do!

▪ Do ongoing security analysis

▪ Organizations (for-profit and non-profit)
▪ NonProfit: CERT (track vulnerabilities)

▪ For profit: Router, OS vendors, ISVs (try
to make $$)

Many enterprises see
only some of this.
Question also is “when
do you find out?”

One reason to come to
IETF is that this is “in
the ether”. Hallway
conversations, WG
presentations.

11

Some people make things
happen,

some watch things happen,

while others wonder what has
happened.

― Eleanor Roosevelt

Version RFC Release Date End of Life
TLS 1.3 RFC 8446 March 21, 2018
TLS 1.2 RFC 5246 August, 2008
TLS 1.1 RFC 4346 April, 2006 June 30, 2018
TLS 1.0 RFC 2246 January, 1999 June 30, 2018

TLS Versions

Deprecation
as security

issues found
TLS Cipher Suites TLS Cipher Suites

IETF and Security

 https://datatracker.ietf.org/group/sec/about/

 The Security Area is the home for working groups focused on security
protocols. They provide one or more of the security services:

▪ integrity,

▪ authentication,

▪ non-repudiation,

▪ confidentiality, and

▪ access control.

Since many of the security mechanisms needed to provide these security
services employ cryptography, key management is also vital.

14

15

(saag) Security Area Open Meeting
(ace) Authentication and Authorization for
Constrained Environments
(acme) Automated Certificate Management
Environment
(cose) CBOR Object Signing and Encryption
(dance) DANE Authentication for Network
Clients Everywhere
(emu) EAP Method Update
(gnap) Grant Negotiation and Authorization
Protocol
(i2nsf) Interface to Network Security Function
(ipsecme) IP Security Maintenance and
Extensions
(jose) Javascript Object Signing and Encryption
(kitten) Common Authentication Technology
Next Generation
(lake) Lightweight Authenticated Key Exchange
(lamps) Limited Additional Mechanisms for PKIX
and SMIME

(mls) Messaging Layer Security
(oauth) Web Authorization Protocol
(ohai) Oblivious HTTP Application
Intermediation
(openpgp) Open Specification for Pretty
Good Privacy
(ppm) Privacy Preserving Measurement
(pquip) Post-Quantum Use In Protocols
(privacypass) Privacy Pass
(radext) RADIUS EXTensions
(rats) Remote ATtestation ProcedureS
(scitt) Supply Chain Integrity,
Transparency, and Trust
(secdispatch) Security Dispatch
(secevent) Security Events
(suit) Software Updates for Internet of
Things
(teep) Trusted Execution Environment
Provisioning
(tls) Transport Layer Security

IETF Security Working Groups

16

(saag) Security Area Open Meeting
(ace) Authentication and Authorization for
Constrained Environments
(acme) Automated Certificate Management
Environment
(cose) CBOR Object Signing and Encryption
(dance) DANE Authentication for Network
Clients Everywhere
(emu) EAP Method Update
(gnap) Grant Negotiation and Authorization
Protocol
(i2nsf) Interface to Network Security Function
(ipsecme) IP Security Maintenance and
Extensions
(jose) Javascript Object Signing and Encryption
(kitten) Common Authentication Technology
Next Generation
(lake) Lightweight Authenticated Key Exchange
(lamps) Limited Additional Mechanisms for PKIX
and SMIME

(mls) Messaging Layer Security
(oauth) Web Authorization Protocol
(ohai) Oblivious HTTP Application
Intermediation
(openpgp) Open Specification for Pretty
Good Privacy
(ppm) Privacy Preserving Measurement
(pquip) Post-Quantum Use In Protocols
(privacypass) Privacy Pass
(radext) RADIUS EXTensions
(rats) Remote ATtestation ProcedureS
(scitt) Supply Chain Integrity, Transparency,
and Trust
(secdispatch) Security Dispatch
(secevent) Security Events
(suit) Software Updates for Internet of
Things
(teep) Trusted Execution Environment
Provisioning
(tls) Transport Layer Security

IETF Security Working Groups

What is
NOT there

What else is NOT there

Why does this matter?

▪ SSH is used by many organizations.

▪ SSH is not standardized by IETF

▪ What are the cipher suites used? (In particular,
quantum safe suites.)

IETF and Security

20

Interesting TLS Drafts

▪ TLS Encrypted Client Hello (draft-ietf-tls-esni-16)

▪ Deprecating Obsolete Key Exchange Methods in TLS 1.2
(draft-ietf-tls-deprecate-obsolete-kex-02)

▪ Hybrid key exchange in TLS 1.3 (draft-ietf-tls-hybrid-design-06)

▪ Merkle Tree Certificates for TLS (draft-davidben-tls-merkle-tree-certs-00)

TLS Encrypted Client Hello

Although TLS 1.3 [RFC8446] encrypts most of the
handshake, including the server certificate, there
are several ways in which an on-path attacker can
learn private information about the connection. The
plaintext Server Name Indication (SNI) extension in
ClientHello messages, which leaks the target domain
for a given connection, is perhaps the most sensitive,
unencrypted information in TLS 1.3.

https://datatracker.ietf.org/doc/draft-ietf-tls-esni/

What is
in the
Client
Hello?

▪ TLS Encrypted Client Hello (draft-ietf-tls-esni-16)

▪

Server Name Indicator Extension

▪Many TLS servers host multiple domains on the same IP address.

▪Private origins may also be deployed behind a common provider, such as a
reverse proxy. In such environments, the SNI remains the primary explicit signal
used to determine the server’s identity.

https://datatracker.ietf.org/doc/draft-ietf-tls-esni/

Deprecating Obsolete Key Exchange
Methods in TLS1.2

▪ This document deprecates the use of RSA key exchange and
Diffie Hellman over a finite field in TLS 1.2, and discourages
the use of static elliptic curve Diffie Hellman cipher suites.

▪ Note that these prescriptions apply only to TLS 1.2 since TLS
1.0 and 1.1 are deprecated by [RFC8996] and TLS 1.3 either
does not use the affected algorithm or does not share the
relevant configuration options.

▪https://datatracker.ietf.org/doc/draft-ietf-tls-deprecate-obsolete-kex/

Hybrid Key Exchange in TLS1.3

▪ Hybrid key exchange refers to using multiple key exchange
algorithms simultaneously and combining the result with the
goal of providing security even if all but one of the component
algorithms is broken.

▪ It is motivated by transition to post-quantum cryptography.
This document provides a construction for hybrid key exchange
in the Transport Layer Security (TLS) protocol version 1.3.

https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/

Merkle Tree Certificates for TLS

▪ This document describes Merkle Tree certificates, a new
certificate type for use with TLS. A relying party that regularly
fetches information from a transparency service can use this
certificate type as a size optimization over more conventional
mechanisms with post- quantum signatures.

▪ Merkle Tree certificates integrate the roles of X.509 and
Certificate Transparency, achieving comparable security
properties with a smaller message size, at the cost of more
limited applicability.

https://datatracker.ietf.org/doc/draft-davidben-tls-merkle-tree-certs/

Early Proposal: Many Signatures

▪ Authors' Note: This is an early draft of a proposal
with many parts. While we have tried to make it as
concrete as possible, we anticipate that most details
will change as the proposal evolves.

▪ A typical TLS [RFC8446] handshake uses many
signatures to authenticate the server public key. In a
certificate chain with an end-entity certificate, an
intermediate certificate, and an implicit trust anchor,
there are two X.509 signatures [RFC5280].

Intermediate Certs, CT, OCSP

▪ Intermediate certificates additionally send an extra
public key. If the handshake uses Certificate
Transparency (CT) [RFC6962], each Signed Certificate
Timestamp (SCT) also carries a signature.

▪ CT policies often require two or more SCTs per
certificate [APPLE-CT] [CHROME-CT].

▪ If the handshake staples an OCSP response
[RFC6066] for revocation, that adds an additional
signature.

 (Note: OCSP = Online Certificate Status Protocol)

Current and Post Quantum Signatures

▪Current signature schemes can use as few as 32 bytes per key
and 64 bytes per signature [RFC8032], but post-quantum
replacements are much larger.

▪For example, Dilithium3 [Dilithium] uses 1,952 bytes per
public key and 3,293 bytes per signature.

▪A TLS Certificate message with, say, four Dilithum3 signatures
(two X.509 signatures and two SCTs) and one intermediate
CA's Dilithium3 public key would total 15,124 bytes of
authentication overhead.

▪Falcon-512 and Falcon-1024 [Falcon] would, respectively,
total 3,561 and 6,913 bytes.

Merkle Tree Certificates

This document introduces Merkle Tree
Certificates, an optimization that authenticates
a subscriber key using under 1,000 bytes.

https://datatracker.ietf.org/doc/draft-davidbe
n-tls-merkle-tree-certs/

What is a Binary Search?

Binary search is an algorithm used to find a specific value
in a sorted list of elements. It is an efficient algorithm
that quickly locates the desired element by repeatedly
dividing the search space in half.

1. **Initial setup**: Assume we have a sorted list of
numbers. Let's say we want to find the number 7 in the
list

 [2, 3, 4, 5, 6, 7, 8, 9, 10].

Divide the List

2. **Divide the list**: We start by looking at the middle element of
the list, which is 6. Since 7 is greater than 6, we know it must be in
the second half of the list.

 [2, 3, 4, 5, 6, 7, 8, 9, 10]

3. **Divide again**: We now divide the second half of the list in
half again and look at the middle element, which is 8. Since 7 is less
than 8, we know it must be in the first half of the remaining
elements.

 [2, 3, 4, 5, 6, 7, 8, 9, 10]

Find the answer

4. **Final step**: We repeat the process of dividing the search
space until we find the desired element or determine that it
doesn't exist. In this case, we find the number 7.

 [2, 3, 4, 5, 6, 7, 8, 9, 10]

Binary sort eliminates half of the remaining elements in each
iteration, making it highly efficient.

Please note that the list in the example was already sorted. If the
list is not sorted, you would need to sort it first before applying
binary sort.

Why Binary Search?

▪When you have to search a large number of items, it is better to
use a binary search rather than sequential.

▪Let’s now discuss binary trees and Merkle / rachet trees which are
used in current cryptography (MLS / TLS)

What is a Binary Tree?

▪ A binary tree is a type of data
structure that consists of nodes
connected in a hierarchical
manner.

▪ Each node in a binary tree can
have at most two children,
referred to as the left child and
the right child.

▪ The topmost node of the tree is
called the root node.

 A

 / \

 / \

 B C

 / \ / \

 D E F G

What is a Binary Tree?

▪ A binary tree is a type of data
structure that consists of nodes
connected in a hierarchical
manner.

▪ Each node in a binary tree can
have at most two children,
referred to as the left child and
the right child.

▪ The topmost node of the tree is
called the root node.

 A

 / \

 / \

 B C

 / \ / \

 D E F G

Root

Left
Child

Right
Child

What is a Merkle Tree?

A hash or Merkle tree is
a tree of hashes in which
the leaves (i.e., leaf
nodes, sometimes also
called "leafs") are hashes
of data blocks in, for
instance, a file or set of
files.

https://en.wikipedia.org/wi
ki/Merkle_tree

39

Interesting MLS Drafts

▪ The Messaging Layer Security (MLS) Protocol
(draft-ietf-mls-protocol-20)

▪ The Messaging Layer Security (MLS) Extensions
(draft-ietf-mls-extensions-01)

▪ The Messaging Layer Security (MLS) Federation
(draft-ietf-mls-federation-02)

▪ The Messaging Layer Security (MLS) Architecture
(draft-ietf-mls-architecture-10)

IETF and Security

41

Terminology for Post Quantum

One aspect of the transition to post-quantum algorithms in
cryptographic protocols is the development of hybrid schemes
that incorporate both post-quantum and traditional
asymmetric algorithms. This document defines terminology
for such schemes. It is intended to be used as a reference and,
hopefully, to ensure consistency and clarity across different
protocols, standards, and organisations.

https://datatracker.ietf.org/doc/draft-ietf-pquip-pqt-hybrid-te
rminology/

https://datatracker.ietf.org/doc/draft-ietf-pquip-pqt-hybrid-terminology/
https://datatracker.ietf.org/doc/draft-ietf-pquip-pqt-hybrid-terminology/

What Terminology?

 Traditional Algorithm: An asymmetric cryptographic algorithm based on integer
factorisation, finite field discrete logarithms or elliptic curve discrete logarithms.

 Post-Quantum Algorithm: An asymmetric cryptographic algorithm that is
believed to be secure against attacks using quantum computers as well as classical
computers.

 Component Algorithm: Each cryptographic algorithm that forms part of a
cryptographic scheme.

 Single-Algorithm Scheme: A cryptographic scheme with one component
algorithm. A single-algorithm scheme could use either a traditional algorithm or a
post-quantum algorithm.

 Multi-Algorithm Scheme: A cryptographic scheme with more than one
component algorithm.

https://datatracker.ietf.org/doc/draft-ietf-pquip-pqt-hybrid-terminology/

https://datatracker.ietf.org/doc/draft-ietf-pquip-pqt-hybrid-terminology/

Changes for Post Quantum

▪Need cipher suites

▪Need TLS changes (key exchange)

▪Need certificate / signing changes

▪Need implementation in crypto libraries (OpenSSL, etc)

▪Need changes to compilers (Java, C++, etc)

▪Need changes to web servers (Apache), data base servers, etc.

▪Need to change application programs

Questions?

Contact:

info@iiesoc.in

president@industrynetcouncil.org

