IPv6 Extension Headers (PDM) and Testing on the Internet

Presented by: Nalini Elkins

NALINI ELKINS

INDUSTRY NETWORK TECHNOLOGY COUNCIL

PRESIDENT@INDUSTRYNETCOUNCIL.ORG

PRANEET KAUR

INDIA INTERNET ENGINEERING SOCIETY

INFO@IIESOC.IN

A few words about me

- President: Industry Network Technology Council
- Founder & CEO: Inside Products, Inc.
- Advisory Board: India Internet Engineering Society
- RFCs: RFC8250 (Embedded performance and diagnostics for IPv6) and others
- Product developer (OEMed by IBM and others)
- Working with IPv6 for 15 years
- Working with network management, diagnostic, performance issues at large brick-and-mortar enterprises for over 30 years

Thanks to ...

National Institute of Technology Karnataka, Surathkal

राष्ट्रीय प्रौद्योगिकी संस्थान कर्नाटक, सुरत्कल

In particular, Dr. Mohit Tahiliani

Industry Network Technology Council

Agenda

- IPv6 address structure
- IPv6 extension headers
- EH testing: standalone
- EH testing: CDN
- NITK Student presentation

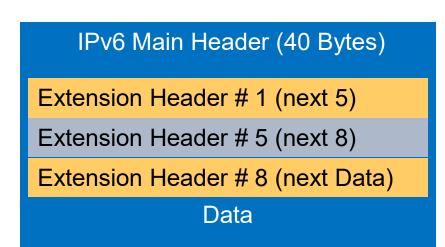
IPv4 and IPv6 Headers

		IPv4 Main He	eader (20) Bytes)				
Version HdrLen Type of Service Total Length								
Identifica	entification			Fragment Offset				
TimeTol	Live	Protocol	Checks	um				
Source IP Address (4 bytes)								
Destination IP Address (4 bytes)								

	i i	Pv6 Main Hea	der (40 Bytes)	8			
Version	sion Traffic Class Flow Label						
Payload I	Length	N	ext Header	Hop Limit			
Source A	ddress (16 bytes)					
Destinatio	on Address (16 b	ytes)					

- What is the same?
- What is different?

The IPv6 Header

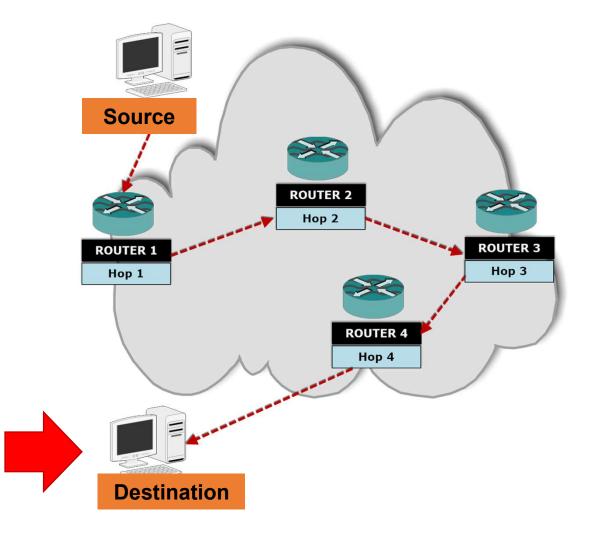

- IPv6 main header: fixed 40 bytes
- Source and destination addresses larger!
- Defined in RFC8200 (originally RFC2460)

IPv6 Main Header (40 Bytes)

Version	Traffic Class	Flow Label						
Payload	Length	Next Hdr	Hop Limit					
Source Address								
Destination Address								

IPv6 Extension Headers

- New: IPv6 extension headers
- Next Header field chains headers
- Rules:
 - May appear only once
 - Must appear in fixed order
 - Exception: Destination Options


Common IPv6 Extension Headers

Next Header (Hex)	Next Header (Decimal)	Header Name	Description
0	0	Hop-by-Hop Options	For all devices on the path
2B	43	Routing	0 – Source Routing (deprecated) 2 – Mobile IPv6
2C	44	Fragment	Only when packet is fragmented
32	50	Encapsulated Security Payload (ESP)	IPSec encrypted data
33	51	Authentication Header (AH)	IPSec authentication
3C	60	Destination Options	http://www.iana.org/assignments /ipv6-parameters/ipv6- parameters.xml (Mobile IP, etc)

No.	. <i>-</i>	Time	Source	Destination	Pro
	1693	46.130640	11	ff02::2	IC
Ŧ	Fram	e 1693 (86	bytes on wire,	, 86 bytes captured)	
Ξ				l (00:14:bf:ba:45:f9),	
				-Discovery_00:00:00:02	(33:33
		urce: 192 pe: IPv6 ((168.1.1 (00:14: Dygedd)	:pT:pa:45:T9)	
			col Version 6		
		rsion: 6			
	Tr	affic class	5: 0×00		
		owlabel: O:			
	Par	yload leng	:h: 32		
	Ne: Hou	xt neader: n limit: 1	THAP uob-pA-u	op option (0x00)	
		p limit: 1 urce addre:			
			address: ff02::	:2	
Ξ		by-hop opt [.]			
			ICMPv6 (0x3a)		
		ngth: 0 (8			
			: MLD (4 bytes))	
		dN: 2 byte: rnet Contr	, ol Message Prot	tocol v6	
			ulticast lister		
		de: 0			
	⊂h	ecksum: Ox:	7ea3 [correct]		
			onse delay: O		
	Mu	lticast Add	dress: ff02::2		

IPv6 Destination Options

•Destination Options: for end host

IPv6 Destination Options

```
∃ Frame 1: 260 bytes on wire (2080 bits), 260 bytes captured (2080 bits)
E Prism capture header

∃ IEEE 802.11 Data, Flags: .....T

Elogical-Link Control
Internet Protocol Version 6, Src: 2001:720:810:1212:209:b7ff:fe3c:902c (2001:720:810:1212:209:b7)

    ⊕ 0110 .... = Version: 6

    ⊞ .... 0000 0000 .... .... .... = Traffic class: 0x0000000

   .... 0000 0000 0000 0000 0000 = Flowlabel: 0x00000000
   Payload length: 40
   Next header: IPv6 destination option (60)
   Hop limit: 255
   Source: 2001:720:810:1212:209:b7ff:fe3c:902c (2001:720:810:1212:209:b7ff:fe3c:902c)
   [Source SA MAC: Cisco_3c:90:2c (00:09:b7:3c:90:2c)]
   Destination: 2001:720:810:1213::1 (2001:720:810:1213::1)
   [Source GeoIP: Unknown]
   [Destination GeoIP: Unknown]
                                                             Use of Destination
 Destination Option
    Next header: Mobile IPv6 (
                                   (62)
                                                          Options in Mobile IPv6
    Length: 2 (24 bytes)
   □ IPv6 Option (PadN)
      Type: PadN (1)
      Length: 2
      PadN: 0000
   □ IPv6 Option (Home Address)
      Type: Home Address (201)
      Length: 16
      Home Address: 2001:720:810:1213::2 (2001:720:810:1213::2)
∃ Mobile IPv6 / Network Mobility
```

Issues

- Routers may drop
- Extension headers may be too big (ASIC size)
- Privacy violations
- Change the extension header not at source
- Parsing of TLV (Type, length, value)

Pros

- New protocol functions = extensible protocol, long maturity
- PDM / PDMv2 : embedded performance and diagnostic metrics + encryption methodology for IPv6 extension headers (RFC8250, et al)
- Many others: source address validation

Can IPv6 Extension Headers Be Used on the Internet?

- Controversy for many years
- A number of studies showing that IPv6 extension headers "don't work"
- Studies (by and large) sent "fake" IPv6 extension headers to Alexa top n sites
- If this is true, our work on our IPv6 Extension Header Destination Option Performance and Diagnostic Metrics (PDM) is really for naught

Brief explanation of PDM

- RFC8250: IPv6 Performance and Diagnostic Metrics (PDM) Destination Option
- To assess performance problems, this document describes optional headers embedded in each packet that provide sequence numbers and timing information as a basis for measurements. Such measurements may be interpreted in real time or after the fact. This document specifies the Performance and Diagnostic Metrics (PDM) Destination Options header.

. Our Testing Components

We have:

- a test server enabled to send EH with every packet
- an IPv6 enabled web server (Apache)
- a packet trace capture tool such as TCPDump, WireShark, etc.

What we did

- Used a small hosting service (not one of the "brand-name" ones)
- Locations throughout the world
- 1. PDM-Warsaw
- 2. PDM-Toronto
- 3. PDM-Seattle
- 4. PDM-Mumbai
- 5. PDM-Melbourne
- 6. PDM-Frankfurt

All machines are FreeBSD with a modification to the kernel to send PDM IPv6 Destination option with every packet.

We have changed to use eBPF. NITK students will talk about this.

Tested large FTP: Toronto to Mumbai (with PDM)

Connected to 2401:c080:2400:1179:5400:04ff:fe0f:804a.

- 220------ Welcome to Pure-FTPd [privsep] [TLS] ------
- 220-You are user number 1 of 50 allowed.
- 220-Local time is now 15:12. Server port: 21.
- 220 You will be disconnected after 15 minutes of inactivity.
- 331 User PDMuser OK. Password required
- 230 OK. Current directory is /
- Remote system type is UNIX.
- Using binary mode to transfer files.

- 229 Extended Passive mode OK (|||3353|)
- 150-Accepted data connection
- 150 27872.0 kbytes to download
- 226-File successfully transferred
- 226 125.107 seconds (measured here), 222.78 Kbytes per second
- 28540928 bytes received in 02:05 (222.31 KiB/s)
- 221-Goodbye. You uploaded 0 and downloaded 27872 kbytes.
- 221 Logout.

Trace of Extension Headers

FTPTorontoToMumbaiJustIPv6.pcap

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

🧾 🐵 📜 🖹 🗙 🙆 🍳 🗰 🔿 警 🖌 💆 📃 🍭 Q. Q. 🎚

pply a displa	y filter <ctrl-></ctrl->			·		
Time	Source	Destination	Protocol	PSN This Packet PSN L	ast Received Info	
38 2.8577	75 2001:19f0:b001:6ce:5400:4ff:fe0f:806d	2401:c080:2400:1179:5400:4ff:fe0f:804a	TCP	20489	0 61272 → 5	3696 [SYN] Seq=0 Win=65535 Len=0 /
39 2.9634	50 2001:19f0:b001:6ce:5400:4ff:fe0f:806d	2401:c080:2400:1179:5400:4ff:fe0f:804a	TCP	14104	12376 62443 → 2	1 [ACK] Seq=101 Ack=805 Win=66240
40 3.0566	35 2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	TCP	23911	20489 53696 → 6	1272 [SYN, ACK] Seq=0 Ack=1 Win=6!
41 3.0566	86 2001:19f0:b001:6ce:5400:4ff:fe0f:806d	2401:c080:2400:1179:5400:4ff:fe0f:804a	TCP	20490	23911 61272 → 5	3696 [ACK] Seq=1 Ack=1 Win=66240
42 3.0567	35 2001:19f0:b001:6ce:5400:4ff:fe0f:806d	2401:c080:2400:1179:5400:4ff:fe0f:804a	FTP	14105	12376 Request:	RETR out.txt
13 3.2532	55 2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	IPv6	23912	20490 IPv6 frag	ment (off=0 more=y ident=0x73059a8
4 3.2532	<pre>84 2401:c080:2400:1179:5400:4ff:fe0f:804a</pre>	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	IPv6	23912	20490 IPv6 frag	ment (off=1432 more=y ident=0x730!
5 3.2532	2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	IPv6	23912	20490 IPv6 frag	ment (off=2864 more=y ident=0x730!
6 3.2532	98 2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	IPv6	23912	20490 IPv6 frag	ment (off=4296 more=y ident=0x730
7 3.2533	04 2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	IPv6	23912	20490 IPv6 frag	ment (off=5728 more=y ident=0x730!
8 3.2533	15 2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	IPv6	23912	20490 IPv6 frag	ment (off=7160 more=y ident=0x730
3.2533	26 2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	IPv6	23912	20490 IPv6 frag	ment (off=8592 more=y ident=0x730
3.2533	32 2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	IPv6	23912	20490 IPv6 frag	ment (off=10024 more=y ident=0x73
3.2533	41 2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	IPv6	23912	20490 IPv6 frag	ment (off=11456 more=y ident=0x73
3.2533	50 2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	FTP-DATA	23912	20490 FTP Data:	14280 bytes (EPASV) (RETR out.tx
3.2533	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	2401:c080:2400:1179:5400:4ff:fe0f:804a	TCP	20491	23912 61272 → 5	3696 [ACK] Seq=1 Ack=14281 Win=51
3.2666	51 2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	FTP	12377	14105 Response:	150-Accepted data connection
3.3724	49 2001:19f0:b001:6ce:5400:4ff:fe0f:806d	2401:c080:2400:1179:5400:4ff:fe0f:804a	TCP	14106	12377 62443 → 2	1 [ACK] Seg=115 Ack=867 Win=66240
3.4492	35 2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	IPv6	23913	20491 IPv6 frag	ment (off=0 more=y ident=0x7acf3f
3.4492	49 2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	IPv6	23913	20491 IPv6 frag	ment (off=1432 more=y ident=0x7ac
3.4492	77 2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	IPv6	23913	20491 IPv6 frag	ment (off=2864 more=y ident=0x7ac
3.4492	83 2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	IPv6	23913	20491 IPv6 frag	ment (off=4296 more=y ident=0x7ac
3.4492	89 2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	IPv6	23913	20491 IPv6 frag	ment (off=5728 more=y ident=0x7ac
3.4493	16 2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	IPv6	23913	20491 IPv6 frag	ment (off=7160 more=y ident=0x7ac
3.4493	2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	IPv6	23913	20491 IPv6 frag	ment (off=8592 more=y ident=0x7ac
3.4493	36 2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	IPv6	23913	20491 IPv6 frag	ment (off=10024 more=y ident=0x7a
3.4493	49 2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	IPv6	23913	-	ment (off=11456 more=y ident=0x7a
3.4493	55 2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	IPv6	23913	20491 IPv6 frag	ment (off=12888 more=y ident=0x7a
3.4493	53 2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	IPv6	23913	20491 IPv6 frag	ment (off=14320 more=y ident=0x7a
7 3.4493	59 2401:c080:2400:1179:5400:4ff:fe0f:804a	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	FTP-DATA	23913	20491 FTP Data:	17136 bytes (EPASV) (RETR out.tx
	2001:19f0:b001:6ce:5400:4ff:fe0f:806d	2401:c080:2400:1179:5400:4ff:fe0f:804a	TCP	20492		3696 [ACK] Seg=1 Ack=31417 Win=49

> Frame 1: 110 bytes on wire (880 bits). 110 bytes cantured (880 bits)

X

From PDM IPv6 DOH

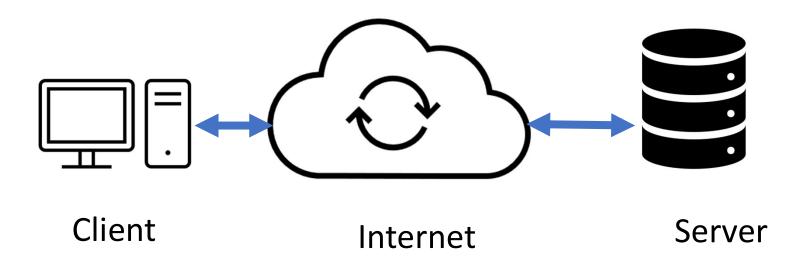
Showing both Extension Headers

✓ De	estination Options for IPv6
	Next Header: Fragment Header for IPv6 (44)
	Length: 1
	[Length: 16 bytes]
~	Performance and Diagnostic Metrics
	> Type: Performance and Diagnostic Metrics (0x0f) Length: 10
	Scale DTLR: 34
	Scale DTLS: 42
	PSN This Packet: 23912
	PSN Last Received: 20490
	Delta Time Last Received: 37754
	Delta Time Last Sent: 45216
~	PadN
	> Type: PadN (0x01)
	Length: 0
	PadN: <none></none>
✓ Fi	ragment Header for IPv6
	Next header: TCP (6)
	Reserved octet: 0x00
	0000 0000 0000 0 = Offset: 0 (0 bytes)
	00. = Reserved bits: 0
	Identification: 0x73059a89
[]	Reassembled IPv6 in frame: 52]
> Data	(1432 bytes)

Bottom line

- 1. PDM-FTP Toronto to Warsaw worked
- 2. PDM-FTP Toronto to Seattle worked
- 3. PDM-FTP Toronto to Mumbai worked
- 4. PDM-FTP Toronto to Melbourne worked
- 5. PDM-FTP Toronto to Frankfurt worked

Traces available for all to look at.


Is hosting service using an overlay network?

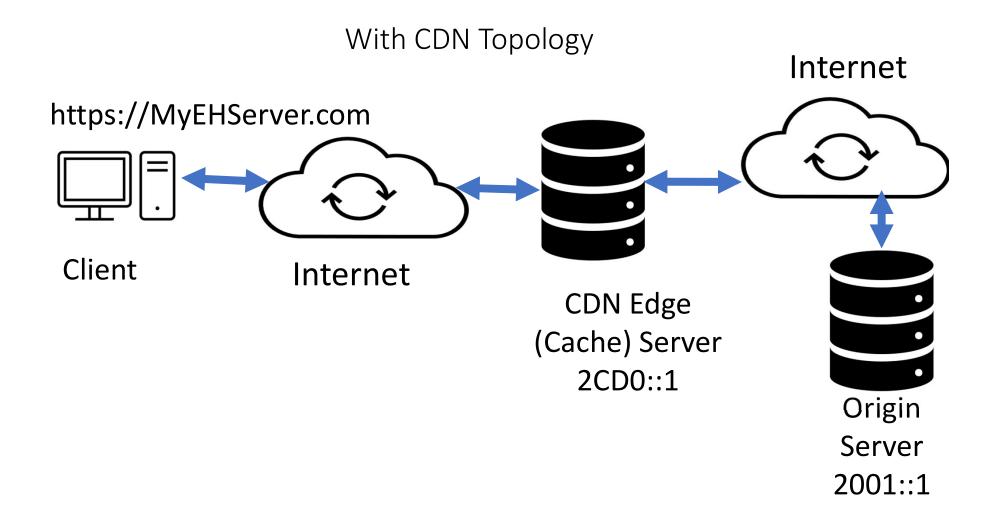
- Email sent by me
 - I have a question about the connection between various [hostingcompany] instances. For example, if I have an instance in Mumbai and another one in Atlanta, then do you have an overlay network? That is, do you have special connectivity between [hostingcompany] instances or is it going over the Internet?
- Response from hosting company
 - Communication between [hostingcompany] VPS residing in different datacenters will always travel on public internet exchanges. [hostingcompany] Private Cloud can create a private network, however this is only for communication between instances in the same datacenter. [hostingcompany] utilizes multiple transit providers.

Why are our results so different from others?

- We are using real data and a real application (e.g. PDM and FTP)
- We are NOT going to the Alexa top n
- But, we also tried to replicate the results of others
- Indeed, if you use the large hosting companies and go to the Alexa top n, there are issues
- But why?

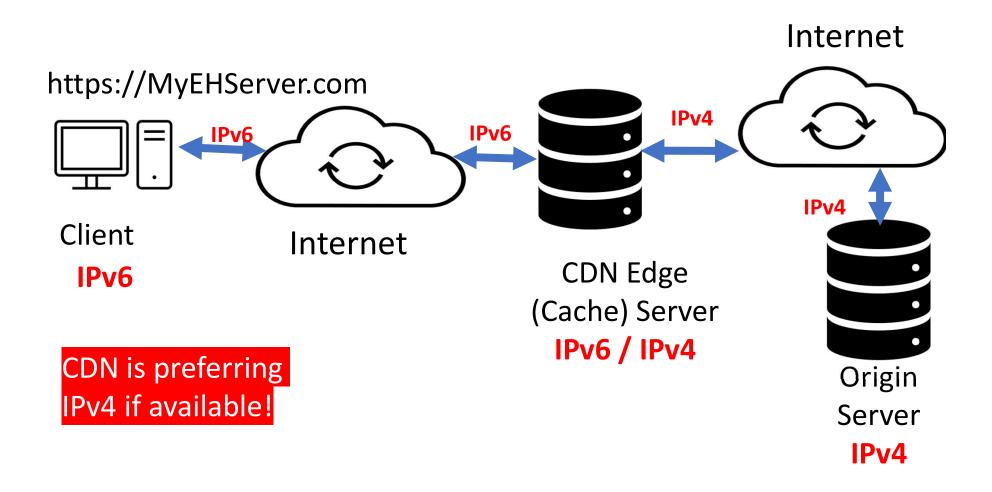
The topology that worked Simplest: Client – Internet -- Server

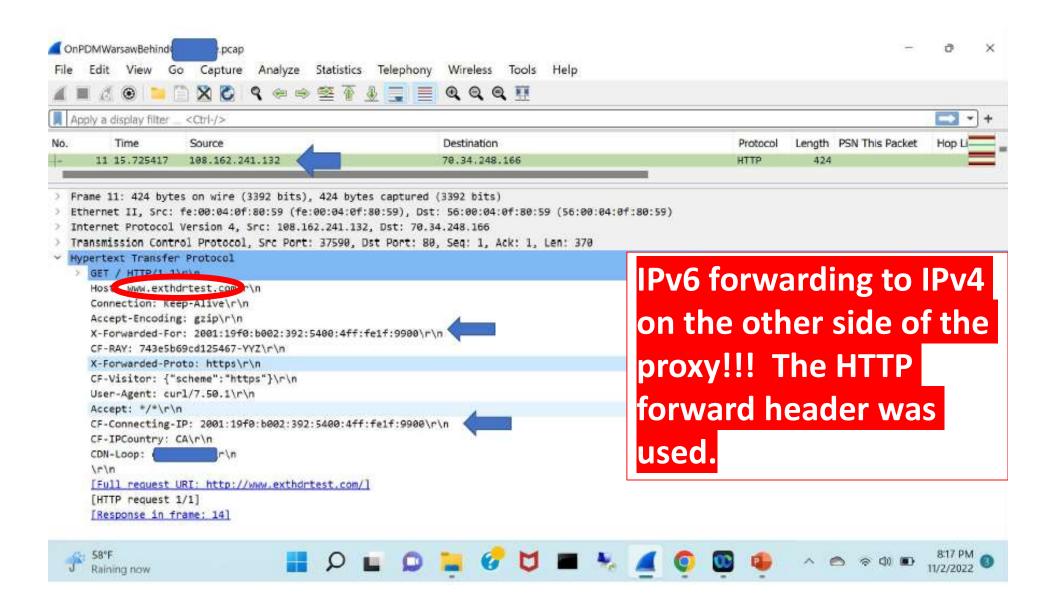
Goal of CDN Testing


- Why look at CDNs?
 - Many high usage websites on the internet use CDNs
 - They have a disproportionate impact on IPv6 and EH use
- Need to figure out
 - Where EH can be sent with 90%+ probability (and why)
 - Where EH CANNOT be sent with 90%+ probability (and why)
 - What is unknown

Move Server Behind CDN

- Our server has a domain name: MyEHServer
- Our server also has an IPv6 address (also IPv4 probably)
- Let's say: 2001::1 and 201.1.1.1 (MyEHServer resolves to these)
- To move behind a CDN, you have to give the CDN authority to resolve MyEHServer
- Let's give the CDN IPv6 addresses starting with 2CD0::/64 (2CD0::1, 2CD0::2, etc)
- After CDN move, MyEHServer will resolve to some CDN cache server address (2CD0::1 for example)

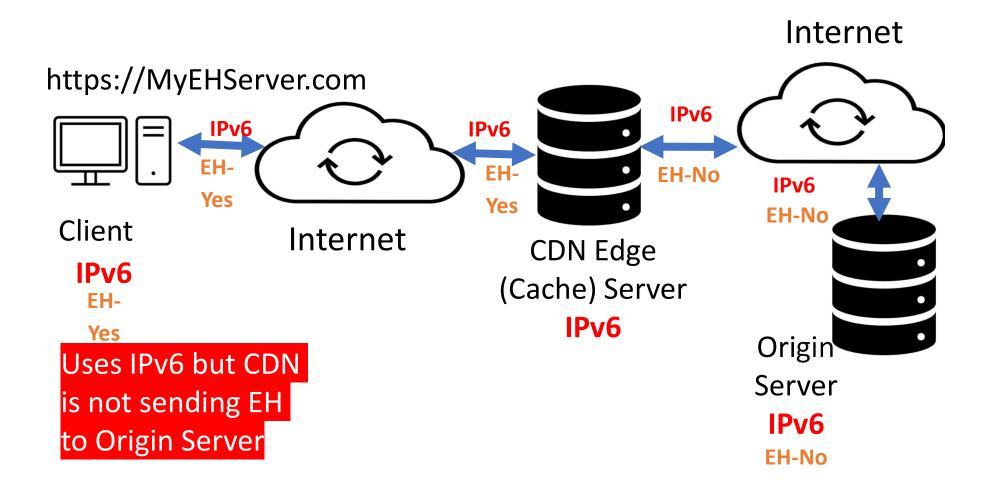

We will now refer to our server as the "Origin Server"



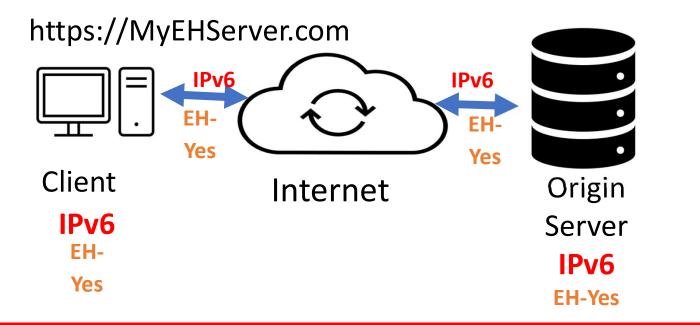
Type 🔺	Name	Content	Proxy status	TTL	Actions
A	exthdrtest.com	45.76.3.11	Proxied	Auto	Edit 🕨
A	ww4	45.76.3.11	DNS only	Auto	Edit 🕨
A	www	45.76.3.11	Proxied	Auto	Edit 🕨
	ww6	2001:19f0:5:3ce7:5400:4ff:fe31:15	27 🐔 DNS only	Auto	Edit 🕨
AAAA	ww6p	2001:19f0:5:3ce7:5400:4ff:fe31:15	27 - Proxied	Auto	Edit 🕨
AAAA	www	2001:19f0:5:3ce7:5400:4ff:fe31:15	527 🔶 Proxied	Auto	Edit 🕨
CNAME	autodiscover	adsredir.ionos.info	Proxied	Auto	Edit 🕨
CNAME	_domainconnect	_domainconnect.ionos.com	Proxied	Auto	Edit 🕨
CNAME	ww6cn	ww6.exthdrtest.com	CNS only	Auto	Edit 🕨
CNAME	ww6cnp	ww6p.exthdrtest.com	Proxied	Auto	Edit 🕨
MX	exthdrtest.com	mx00.ionos.com	10 DNS only	Auto	Edit 🕨
MX	exthdrtest.com	mx01.ionos.com	10 DNS only	Auto	Edit 🕨

So, the way many CDNs work is that they can either serve as "DNS only" or "DNS and Proxy"

Test #1: Going to Dual Stacked Web server and DNS



Let's take out the IPv4 definitions in DNS


;; A Records					
exthdrtest.com.	1	IN	А	45.76.3.11	Original
ww4.exthdrtest.com.	1	IN	А	45.76.3.11	
www.exthdrtest.com.	1	IN	А	45.76.3.11	
;; AAAA Records					
• www.exthdrtest.com.	1	IN	AAAA	2001:19f0:5:3ce7:5400:4ff:fe31:1527	

;; A Records ww4.exthdrtest.com.	1	IN	A 45.	76.3.11	New
;; AAAA Records www.exthdrtest.com.	1	IN	ΑΑΑΑ	2001:19f0:5:3ce7:5400:4ff:fe31:1	527

Test #2: IPv6-only Web Server and DNS AAAA only

Test #3: Doing DNS only at CDN

This works. We have managed to send EH to Origin Server by bypassing CDN Proxy. Now we are back to simple client / server scenario

Preliminary Conclusions

- Where EH can be sent with 90%+ probability (and why)
 - Standalone webservers (certain size / type EH)
- Where EH CANNOT be sent (to Origin Server) with 90%+ probability (and why)
 - CDN mediated web sites (unless in DNS-only mode)
 - "Proxy" may be the reason
 - More complications being researched
- What is unknown
 - Is it possible to collocate with CDN proxy to return EH?

Questions

- Should CDNs be encouraged to prioritize IPv6 over IPv4 in DNS?
- Should CDNs be encouraged to do IPv6 to Origin Server?
- How can EH be sent to Origin Server? (CDNs will not provide).

Students from NITK

National Institute of Technology Karnataka, Surathkal

राष्ट्रीय प्रौद्योगिकी संस्थान कर्नाटक, सुरत्कल

Chinmaya Sharma, Amogh Umesh, Balajinaidu V.

Professor: Dr. Mohit Tahiliani

Implementation of PDMv2 in eBPF

Balajinaidu V Amogh Umesh Chinmaya Sharma

tc-BPF

- Subset of eBPF programs attached at qdisc level
- Can be attached to both ingress and egress compared to only ingress in XDP
- Better packet mangling capability
- Executed after sk_buff is created
- Not good for complete packet rewrites
- Doesn't require hardware changes

Implementation of PDM using eBPF

- Easy development and testing.
- Using tc-BPF, so that we can attach to both ingress and egress of a interface.
- Modifying the packet after sk_buff is constructed
- eBPF maps to store the 5-tuple state.

Progress till now

- Explored using eBPF to add Extension Headers to packets
- Implemented <u>PDM</u> using tc-BPF
- Implementation uses eBPF programs attached to qdisc at both ingress and egress
- Uses BPF maps to store information specific to a flow
- Currently in the process of implementing PDMv2 in eBPF

Challenges for encryption in eBPF

- Lack of library support for encryption in eBPF
- Limit on the number of instructions
- Lack of resources of other implementations
- eBPF verifier causing errors in loading in various situations
- May not be efficient due to eBPF and encryption being CPU intensive

Testing with XOR Encryption

- We tested XOR encryption in eBPF to check if it could be done without any problems
- Faced with an error of too many processing instructions from the verifier
- Error due to setting the loop iterative variable as 64 bits unsigned integer instead of 32 bits, which may have caused the verifier to check for more states
- Successfully encrypted PDM in eBPF using XOR encryption

Challenges with verifier

- Verifier checks are extremely stringent
- Checks all possible outputs of function to verify its termination
- This may get out of hand if manipulating large data
- Difficult for encryption

Some useful Links

<u>ebpf.io</u>

<u>RFC8250</u>

PDMv2-Draft

<u>tc-BPF</u>

Next steps ...

- Test with:
 - CDNs (continued / collocation)
 - Cloud providers
 - Routers
 - ISPs
 - Load balancers
 - OSs
- Need to test ALL extension headers!
- This will be a long process!

Questions?

Contact:

info@iiesoc.in

president@industrynetcouncil.org