
Dawn of the
Post-Quantum Internet
Dr Bas Westerbaan, Cloudflare Research
Connections 2024, Feb 8th, 2024

About Cloudflare
We run a global network spanning 300 cities in over 100
countries.
Started of as a CDN and DDoS mitigation company, we now
offer many more services, including
● 1.1.1.1, public DNS resolver
● Workers, serverless compute
● SASE, to protect corporate networks
We serve nearly 20% of all websites and
process 46 million HTTP requests per second.

https://w3techs.com/technologies/overview/proxy/all

Building a better Internet
Cloudflare cares deeply about a private, secure and fast
Internet, helping design, and adopt, among others:
● Free SSL (2014), TLS 1.3 and QUIC
● DNS-over-HTTPS
● Private Relay / OHTTP
● Encrypted ClientHello
And, the topic today:
● Migrating to post-quantum

cryptography.

This talk
Overview of the current state of migration of the Internet /
WebPKI, and its unique challenges.

Changing the Internet / WebPKI is hard
● Very diverse. Many different users / stakeholders with

varying (performance) constraints and update cycles.
We can’t assume everyone is on fiber, or uses modern CPU, can
store state, or can update at all.

● Protocol ossification. Despite being designed to be
upgradeable, any flexibility that isn’t used in practice, is
probably broken, because of faulty implementations.

TLS 1.3 migration
Early versions of TLS 1.3 were
completely undeployable
because of protocol ossification.
After six more years of testing
and adding workarounds, the
final version of TLS 1.3 is a
success, used by over 90% of
our visitors.

Cloudflare Radar

https://blog.cloudflare.com/why-tls-1-3-isnt-in-browsers-yet/
https://radar.cloudflare.com/adoption-and-usage

There will be two post-quantum migrations.

1. Key agreement 🤝
Communication can be recorded today and decrypted in
the future. We need to upgrade as soon as possible.

2. Signatures 🖋
Less urgent: need to be replaced before the arrival of
cryptographically-relevant quantum computers.

3.

Key agreement 🤝
Urgent, and the easier one.

Feasibility study with Chrome
In 2019 we performed large-scale test of
PQ kex with Chrome. Takeaways:
● Performance of lattice-based KEMs

is acceptable.
● Significant amount of broken clients

because of protocol ossification (split
ClientHello.)

Google has been working with vendors to
fix issues.

X25519. CECPQ2 is X25519+NTRU-HRSS (lattice) and
CECPQ2b is X25519+SIKE (isogenies, broken)

https://blog.cloudflare.com/the-tls-post-quantum-experiment/

Early deployments
2022 coordinating at IETF, we
enabled post-quantum key
agreement (~20% Internet.)
In 2023 Google enabled
server-side as well.
Browsers:
● Chrome. Enabled for 10%

of all traffic.
● Firefox. Opt-in in nightly.

https://blog.cloudflare.com/post-quantum-for-all/
https://datatracker.ietf.org/doc/draft-tls-westerbaan-xyber768d00/
https://datatracker.ietf.org/doc/draft-tls-westerbaan-xyber768d00/

Promising early results
As of writing, no hard failures preventing further roll-out
identified by Chrome🤞. Our own testing has shown that there
are about a hundred customers with incompatible origin
servers. We’re reaching out to help fix them.
It is likely that we will see double-digit percentage
post-quantum key-agreement later this year.

Key agreement 🤝
Urgent and the easier of the two to deploy. We’re
on track for ~30% client-side deployment in 2024.
That took 5 years.

Signatures 🖋
Less urgent, but much more challenging.

#1, many more parties involved:
Cryptography library developers, browsers, certificate
authorities, HSM manufacturers, CT logs, and every server
admin that cobbled together a PKI script.

#2, there is no all-round great PQ signature

Intermezzo: naming confusion

Original name NIST’s name FIPS number

Dilithium ML-DSA 204

Falcon FN-DSA ?

SPHINCS+ SLH-DSA 205

Kyber ML-KEM 203

For the moment I will use the original names.

Online signing — Falcon’s Achilles’ heel
● For fast signing, Falcon requires a floating-point unit (FPU).
● We do not have enough experience running cryptography

securely (constant-time) on the FPU.
● On commodity hardware, Falcon should not be used when

signature creation can be timed, eg.
TLS handshake.

● Not a problem for signature verification.

#3, there are many signatures on the Web
● Root on intermediate
● Intermediate on leaf
● Leaf on handshake
● Two SCTs for Certificate Transparency
● An OCSP staple

Typically 6 signatures
and 2 public keys
when visiting a website.
(And we’re not even counting DNSSEC.)

Using only Dilithium2

+17,144 bytes
Using Dilithium2 for the TLS handshake and Falcon for the rest

+7,959 bytes
Is that too much? We had a look…

blog.cloudflare.com/sizing-up-post-quantum-signatures, 2021

https://blog.cloudflare.com/sizing-up-post-quantum-signatures/

And, of course…

Protocol ossification
Bump in missing requests
suggests some clients or
middleboxes do not like
certificate chains longer
than 10kB and 30kB.
This is problematic for
composite certificates.
Instead configure servers for
multiple separate
certificates and let TLS
negotiate the one to send.

Not great, not terrible
It probably won’t break the Web, but the performance
impact will delay adoption.

NIST signature on-ramp
NIST took notice and has called for new signature
schemes to be submitted.
See backup slides at the end.
The short of it: there are some very promising submissions, but
their security is as of yet unclear.
Thus, we cannot assume that a new post-quantum signature
will solve our issues.

https://csrc.nist.gov/projects/pqc-dig-sig
https://csrc.nist.gov/projects/pqc-dig-sig

In the meantime
There are small and larger changes
possible to the protocols to reduce the number of signatures.
● Leave out intermediate certificates.
● Use key agreement for authentication.
● Overhaul WebPKI, eg. Merkle Tree Certificates.
These are discussed briefly in the backup slides at the end.

Signatures 🖋
Less urgent, but path is unclear. Real risk we will start
migrating too late.

That’s not all: the Internet isn’t just TLS
There is much more cryptography out there with their own
unique challenges.
● DNSSEC with its harder size constraints
● Research into post-quantum privacy enhancing techniques,

eg. anonymous credentials, is in the early stages.

Thank you, questions?

References
● Follow along at the IETF
● Check out our blog, eg.:

● 2019 TLS experiment with Google
● Sizing-up Post-Quantum Signatures
● Deploying Kyber worldwide

● Reach out: ask-research@cloudflare.com

https://www.ietf.org/mailman/listinfo/Pqc
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://blog.cloudflare.com/sizing-up-post-quantum-signatures/
https://blog.cloudflare.com/post-quantum-for-all/
mailto:ask-research@cloudflare.com

Backup slides

Not all signatures are equal
The TLS handshake signature is created on-the-fly (online) and
is transmitted together with its public key.
The handshake signature benefits from balanced
signing/verification time, and balanced public key/signature size.
The other signatures are offline, and can trade signing time for
better verification time. The intermediate’s signatures are sent
with their corresponding public key, and the rest (SCT/OCSP
staple) without public key.
The former benefits from balanced signature/public key size. For
the latter it’s beneficial to trade public key and signature sizes.

Sizes (bytes) CPU time (lower is better)

PQ Public key Signature Signing Verification

Standardised Ed25519 ❌ 32 64 1 (baseline) 1 (baseline)

RSA-2048 ❌ 256 256 70 0.3

Hash-based XMSS* w=256 h=20 n=16 ✅ 32 608 6 ⚠ 2

NIST drafts Dilithium2 ✅ 1,312 2,420 4.8 0.5

Falcon512 ✅ 897 666 8 ⚠ 0.5

SPHINCS+128s ✅ 32 7,856 8,000 2.8

SPHINCS+128f ✅ 32 17,088 550 7

Sample from
signatures
on-ramp

MAYO_one ✅ 1,168 321 11 1.3

MAYO_two ✅ 5,488 180 13 0.7

SQISign I ✅ 64 177 60,000 500

UOV Is-pkc ✅ 66,576 96 2.5 2

HAWK512 ✅ 1,024 555 2 1

Concrete instances with NIST drafts
Using Dilithium2 for everything adds 17kB.

Using Dilithium2 for handshake and Falcon512 for the rest, adds 8kB.
⚠ Fast and secure Falcon512 signing is hard to implement.

Using SPHINCS+-128 for everything adds 50kB. Order of magnitude
worse signing time than RSA. Most conservative choice.

Stateful hash-based signatures
Using XMSS(MT) with w=256, n=128, two subtrees for SCTs and
intermediates, and single tree for the rest, and Dilithium2 for
handshake signature, adds 8kB.

⚠ n=128 and w=256 instances are not standardised.

⚠ We lose non-repudiation.

⚠ Large precomputations/storage required for efficient signing.

⚠ Challenging to keep state.

Concrete instances with on-ramp candidates
Using MAYO one for leaf/intermediate, and two for the rest, adds
3.3kB. Signing time between ECC/RSA. ⚠ Security uncertain.

Using UOV Is-pkc for root and SCTs, and HAWK512 for the rest, adds
3.2kB. 66kB for stored UOV public keys. HAWK relies on Falcon
assumptions and then some more.

Using UOV ls-pkc again, but combined with Dilithium2. Adds 7.4kB.
Relatively conservative choice.

SQIsign only. Adds 0.5kB. Signing time >1s (not constant-time), and
verification time >35ms. 🐢

blog.cloudflare.com/sizing-up-post-quantum-signatures, 2021

https://blog.cloudflare.com/sizing-up-post-quantum-signatures/

Leaving out intermediates
Most browsers ship intermediates, so why bother
sending them?

Leaving out intermediates

Three proposals:

● 2019, draft-kampanakis-tls-scas, send flag to indicate server
should only return leaf. Simple but error prone.

● 2022, draft-ietf-tls-cert-abridge, replaces intermediates with
identifiers from yearly updated central list from CCADB. Client
sends version of latest list. Also proposes tailored compression.

● 2023, draft-davidben-tls-trust-expr. Simplified: client sends which
trust store it uses, and the version it has. CA adds as metadata to
a certificate, in which trust store (version) it’s included. Trust
stores can then add intermediates as roots.

https://datatracker.ietf.org/doc/draft-kampanakis-tls-scas-latest/
https://datatracker.ietf.org/doc/draft-ietf-tls-cert-abridge/
https://datatracker.ietf.org/doc/draft-davidben-tls-trust-expr/

Gains leaving out intermediates: median 3kB

From Dennis Jackson’s draft-ietf-tls-cert-abridge-00

https://datatracker.ietf.org/doc/draft-ietf-tls-cert-abridge/00/

KEMTLS (aka. Authkem)
Use KEM instead of signature for handshake
authentication.

https://datatracker.ietf.org/doc/draft-celi-wiggers-tls-authkem/

KEMTLS
Replacing Dilithium2 handshake signature with Kyber512 saves
2.9kB server → client, but adds 768B in the second flight client
→ server.
At the moment gains are modest. Interesting for embedded, to
reduce code size by eliminating primitive. Client authentication
with KEM requires extra roundtrip.
Large change to TLS. Subtle changes in security guarantees. We
have a formal analysis.
Proof-of-possession unclear. Could be done with lattice-based
zero-knowledge proofs or challenge-response.

https://eprint.iacr.org/2022/1111

Merkle Tree Certificates

Pain-points of current WebPKI

OCSP is expensive to run, whereas majority of users don’t use
it, but rely on CRL instead (via eg. CRLite).
Too many signatures.
Certificate Transparency is difficult to run.
Many sharp edges: path building, punycode, constraint
validation, etc.
(Domain control validation is imperfect — not addressed.)

Changing the WebPKI

With the post-quantum migration, the marginal cost of
changing the WebPKI is lower than ever.
There is a huge design space, with many trade offs.
Merkle Tree Certificates (MTC) is a concrete, ambitious, but
early draft. We’re looking for feedback on the design and
general direction.
Not a complete replacement for current WebPKI: it’s an
optimisation of the common case and falls back to X.509+CT.

https://datatracker.ietf.org/doc/draft-davidben-tls-merkle-tree-certs/

Merkle Tree Certificates in short (1)

On a set time, eg. every hour, the CA publishes:
● The batch of assertions they certify. All assertions in a batch

are implicitly valid for the same window, eg. 14 days. For
each batch, the CA builds a Merkle tree on top.

● A signature on the roots of all currently valid batches.
Trust Services (eg. browser vendors) regularly pull the latest
batches and window signatures from CAs, verify them for
consistently, and only send the Merkle tree roots to the
browsers.

Merkle Tree Certificates in short (2)

A Merke tree certificate is an assertion together with a Merkle
authentication path to the root of the batch.
A server would install three certificates: two Merkle tree
certificates 7 days apart, and a fall back X509 certificate.
When connecting to a server, the client sends the sequence
number of the latest batches it knows of each MTC CA.
If the client is sufficiently up-to-date, the server can return one
of the Merkle tree certs, and otherwise will fall back to X.509.

Merkle Tree Certificates sizes

There are currently 6 billion unexpired certificates in CT.
If reissued every 7 days by one MTC CA, we’d have batches of
35 million assertions.
That amounts to authentication paths of 832 bytes, and with a
Dilithium2 public key a typical Merkle tree certificate will be well
below 2.5kB, smaller than only the median compressed
classical intermediate certificate of 3.2kB.

Wrapping up

We saw several different approaches to cope with large
post-quantum signatures, from simple to ambitious.
There are still many unknowns: among others, compliance
requirements; cryptanalytic breakthroughs; ecosystem
ossification; stakeholder constraints; etc.
Which approach to take? I’d say it’s good to have multiple pots
on the stove.

This function from Falcon
as submitted to round 3 is
not constant-time on
ARMv7 as claimed.
Can you spot the error?

TLS 1.3 handshake

KEM versus Diffie–Hellman

Post-Quantum Cryptography
for Engineers

https://datatracker.ietf.org/doc/draft-ietf-pquip-pqc-engineers/

K Tirumaleswar Reddy (Nokia)

25.07.23 1

https://datatracker.ietf.org/doc/draft-ietf-pquip-pqc-engineers/

Why the draft is relevant to PQUIP?

• The draft explains why engineers need to be aware of and understand
post-quantum cryptography.

• It emphasizes the potential impact of Cryptographically Relevant Quantum
Computers (CRQCs) on current cryptographic systems and the need to
transition to post-quantum algorithms to ensure long-term security.

• Not much cryptographic math is used in explained in this draft but rather
an overview of post quantum use in protocols.

25.07.23 2

Asymmetric Crypto Symmetric Crypto

Impact of Quantum Computers in Cryptography

Peter Shor

Algorithm for prime

factorization of large

integers

Lov Kumar Grover

shows how to search in √𝑁

Broken Double key sizes
(theoretically)

25.07.23 3

Symmetric Cryptography (Grover’s algorithm)

• Grover’s algorithm theoretically requires us to double the key-size
(AES128 -> AES256)

• This would affect all symmetric crypto algorithms that are used currently.

• Yet, this is a misconception:

• Grover’s algorithm is highly non parallelizable

• Even thousands of QCs running in parallel would offer minimal gains in
breaking symmetric keys.

• NIST still standardizes AES-128 (link).

25.07.23 4

https://www.nist.gov/publications/advanced-encryption-standard-aes

PQC standardization timeline

1st NIST workshop

on PQC

NIST announces

competition-like

process

Submission deadline

82 received, 69 accepted

Announcement

26 algorithms make

it to 2nd round

Final standard

Announcement

7 finalists and 8

alternate

algorithms for the

3rd round

Announcement

4 finalists (1 ΚΕΜ, 3

Digital signatures

Announcement

4th round starts

2020 2022 20242015 2016 2017

Deadline for
additional Digital
Signature Schemes
(June 1, 2023)

2023

25.07.23 5

A Harvest Now and Decrypt Later (HNDL) Attack on TLS

TLS Session

Handshake Data Exchange

Quantum attack
using Shor

Key
Establishment

Obtain private key Ciphertext Decrypt using
extracted key

Plaintext

25.07.23 6

Mosca's theorem of cybersecurity in the quantum era1

xy

z

If x + y > z, then start worrying

x: time we want to keep our systems secure
y: time to deploy a quantum-safe migration plan
z: time to build a large-scale quantum computer (2030s?)

Secrets revealed

What do we do here?

time

[1] https://eprint.iacr.org/2015/1075.pdf

25.07.23 7

Traditional Cryptographic Primitives that Could Be Replaced by PQC

Asymmetric
cryptographic

algorithms based on
integer factorization,
finite field discrete

logarithms or elliptic
curve discrete

logarithms will be
vulnerable to attacks

using Shor's Algorithm
on a CRQC

Key
Agreement

Digital
Signatures

25.07.23 8

Finalists 4th round

KEM/Encryption CRYSTALS-KYBER BIKE
Classic McEliece
HQC
SIKE

Signatures CRYSTALS-Dilithium
FALCON
SPHINCS+

Isogeny
based

Cryptography
: Broken!

Code-Based
CryptographyLattice Based

Cryptography

Hash Based
Signatures

NIST Candidates Selected for Standardization/4th Round Candidates

25.07.23 9

KEM DH KEX

25.07.23 10

KEM based AKE

25.07.23 11

Security property for KEM and Signatures

IND-CCA2

• IND-CCA2 (Indistinguishability under
adaptive Chosen-Ciphertext Attack) is an
advanced security notion for encryption
schemes. It ensures the confidentiality of
the plaintext, resistance against chosen-
ciphertext attacks, and prevents the
adversary from forging new ciphertexts.

• Kyber, BIKE, Classic McEliece provide IND-
CCA2 security

EUF-CMA

• EUF-CMA (Existential Unforgeability under
Chosen Message Attack) [GMR88] is a
security notion for digital signature
schemes. It guarantees that an adversary,
even with access to a signing oracle,
cannot forge a valid signature for an
arbitrary message. EUF-CMA provides
strong protection against forgery attacks,
ensuring the integrity and authenticity of
digital signatures by preventing
unauthorized modifications or fraudulent
signatures.

• Dilithium, Falcon and Sphincs+ provide
EUF-CMA security.

25.07.23 12

Details of XMSS and LMS

• PQC: XMSS (RFC8391) and LMS (RFC8554) are stateful hash-based
signature schemes.

• Reusing a secret key state compromises cryptographic security
guarantees.

• Signing a potentially large but fixed number of messages

• The number of signing operations depends upon the size of the tree.

• Increasing the number of layers reduces key generation time
exponentially and signing time linearly at the cost of increasing the
signature size linearly.

25.07.23 13

Hash-then-Sign vs Sign-then-Hash

• Hash-then-Sign: Fixed size digest of the message is signed.

• Rely on the collision-resistance of the hash function.

• Reduces the size of signed messages.

• Protocols like TLS 1.3 and DNSSEC use the Hash-then-Sign paradigm.

• PQC Signature schemes internally apply hash functions.

25.07.23 14

PQ/T Hybrid Confidentiality

• Protect from protect from "Harvest Now, Decrypt Later" attack

• Concatenate hybrid key agreement scheme

• Hybrid key exchange in TLS 1.3 https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-
design/

• It provides hybrid confidentiality but does not address hybrid authentication

• the client's key-share contains two component public keys, one for a post-quantum
algorithm and one for a traditional algorithm (ECDH ephemeral key-share)

• For the server’s share, concatenation of ct (ciphertext) and ephemeral key-share
(ECDH)

• hybrid secret by concatenating the two shared secrets

• Cascade hybrid key agreement scheme

• Multiple Key Exchanges in the Internet Key Exchange Protocol Version 2 (IKEv2)
https://datatracker.ietf.org/doc/rfc9370/

• Allows the negotiation of one or more PQC algorithms to exchange data, in addition to
the existing (EC)DH key exchange data.

25.07.23 15

https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/
https://datatracker.ietf.org/doc/rfc9370/

PQ/T Hybrid Authentication

• Protect from on-path attacker using CRQC

• Authentication through a PQ/T hybrid scheme or a PQ/T hybrid protocol, as long
as at least one component algorithm remains secure to provide the intended
security level.

• The frequency and duration of system upgrades and the time when CRQCs will
become widely available need to be weighed in to determine whether and when
to support the PQ/T Hybrid Authentication property.

• Discussions in LAMPS WG to use PQ/T Hybrid Certificate

25.07.23 16

Security levels (PQC Algorithms: NIST)

PQ Security Level AES/SHA3 hardness PQC Algorithm

1 Find optimal key in AES-128 Kyber512, Falcon512, Sphincs+SHA256 128f/s

2 Find optimal collision in SHA3-256 Dilithium2

3 Find optimal key in AES-192 Kyber768, Dilithium3, Sphincs+SHA256 192f/s

4 Find optimal collision in SHA3-384 No algorithm tested at this level

5 Find optimal key in AES-256
Kyber1024, Falcon1024, Dilithium5,
Sphincs+SHA256 256f/s

25.07.23

Key takeaway: Users can leverage the required algorithm based on the security level based on
their use case. The security is defined as a function of resources required to break AES and SHA3
algorithms, i.e., optimal key recovery for AES and optimal collision attacks for SHA3.

Key & ciphertext/signatures of PQC Algorithms on different
security levels

PQ Security Level Algorithm
Public key size (in
bytes)

Private key size (in
bytes)

Ciphertext/Signature
size (in bytes)

1 Kyber512 800 1632 768

1 Falcon512 897 1281 666

2 Dilithium2 1312 2528 2420

3 Kyber768 1184 2400 1088

5 Falcon1024 1793 2305 1280

5 Kyber1024 1568 3168 1588

25.07.23 18

SPHINCS+ and its many variants (Simple only)

PQ Security
Level

Algorithm
Public key size
(in bytes)

Private key size
(in bytes)

Signature size
(in bytes)

1
SPHINCS+-{SHA2,SHAKE}-
128f

32 64 17088

1
SPHINCS+-{SHA2,SHAKE}-
128s

32 64 7856

3
SPHINCS+-{SHA2,SHAKE}-
192f

48 96 35664

3
SPHINCS+-{SHA2,SHAKE}-
192s

48 96 16224

5
SPHINCS+-{SHA2,SHAKE}-
256f

64 128 49856

5
SPHINCS+-{SHA2,SHAKE}-
256s

64 128 29792

25.07.23 19

SPHINCS+ algorithm
security levels for
different categories i.e.,
(f) for fast verification
and (s) for
compactness/smaller.
Both SHA256 and SHAKE-
256 parametrisation
output the same
signature sizes, so both
have been included.

Falcon vs Dilithium vs Sphincs+

• Dilithium is known for its relatively fast signature generation, while
Falcon can provide more efficient signature verification.

• Falcon also has lower key and signature sizes as compared to
Dilithium.

• SPHINCS+ offers smaller key sizes, larger signature sizes, slower
signature generation, and slower verification when compared to
Dilithium and Falcon.

25.07.23 20

Challenges in Falcon's Signing Operations

• Falcon's signing operations require constant-time, 64-bit floating
point operations to avoid catastrophic side channel vulnerabilities.
Doing this correctly (which is also platform-dependent to an extreme
degree) is very difficult, as NIST's report noted.

• Providing a masked implementation of Falcon also seems impossible,
per the authors at the RWPQC 2023 symposium earlier this year.

25.07.23 21

PQC vs Traditional KEMs/KEXs

PQ Security Level Algorithm
Public key size (in
bytes)

Private key size (in
bytes)

Ciphertext size (in
bytes)

Traditional P256_HKDF_SHA256 65 32 65

Traditional P521_HKDF_SHA512 133 66 133

Traditional
X25519_HKDF_SHA2
56

32 32 32

1 Kyber512 800 1632 768

3 Kyber768 1184 2400 1088

5 Kyber1024 1568 3168 1588

25.07.23 22

PQC vs Traditional Signatures

PQ Security Level Algorithm
Public key size (in
bytes)

Private key size (in
bytes)

Signature size (in
bytes)

Traditional RSA2048 256 256 256

Traditional P256 64 32 64

1 Falcon512 897 1281 666

2 Dilithium2 1312 2528 768

3 Dilithium3 1952 4000 3293

5 Falcon1024 1793 2305 1280

25.07.23 23

Security Considerations - Cryptanalysis

• Classical cryptanalysis exploits weaknesses in algorithm design,
mathematical vulnerabilities, or implementation flaws, whereas
quantum cryptanalysis harnesses the power of CRQCs to solve
specific mathematical problems more efficiently.

• Both pose threats to the security of cryptographic algorithms,
including those used in PQC

• Developing and adopting new cryptographic algorithms resilient
against these threats is crucial for ensuring long-term security in the
face of advancing cryptanalysis techniques

25.07.23 24

Security Considerations - Cryptographic Agility

• Cryptographic agility is relevant for both classical and quantum
cryptanalysis as it enables organizations to adapt to emerging threats,
adopt stronger algorithms, comply with standards, and plan for long-
term security in the face of evolving cryptanalytic techniques and the
advent of CRQCs.

• Several PQC schemes are available that need to be tested;
cryptography experts around the world are pushing for the best
possible solutions, and the first standards that will ease the
introduction of PQC are being prepared

25.07.23 25

Hybrid Key Exchange : Bridging the Gap Between Post-
Quantum and Traditional Cryptography

• Post-quantum algorithms selected for standardization are relatively
new and they they have not been subject to the same depth of study
as traditional algorithms.

• In addition, certain deployments may need to retain traditional
algorithms due to regulatory constraints, for example FIPS
compliance.

• Hybrid key exchange enables potential security against "Harvest Now,
Decrypt Later" attack while not fully abandoning traditional
cryptosystems.

25.07.23 26

Contributing to this document

• Comments and Suggestions are welcome

• The document is being collaborated on: tireddy2/pqc-for-engineers
(github.com)

• E-mail archive: pqc (ietf.org)

25.07.23 27

https://github.com/tireddy2/pqc-for-engineers
https://github.com/tireddy2/pqc-for-engineers
https://mailarchive.ietf.org/arch/browse/pqc/?q=Post-Quantum%20Cryptography%20for%20Engineers

	Slide 1: Post-Quantum Cryptography for Engineers
	Slide 2: Why the draft is relevant to PQUIP?
	Slide 3
	Slide 4: Symmetric Cryptography (Grover’s algorithm)
	Slide 5
	Slide 6
	Slide 7: Mosca's theorem of cybersecurity in the quantum era1
	Slide 8: Traditional Cryptographic Primitives that Could Be Replaced by PQC
	Slide 9
	Slide 10: KEM
	Slide 11: KEM based AKE
	Slide 12: Security property for KEM and Signatures
	Slide 13: Details of XMSS and LMS
	Slide 14: Hash-then-Sign vs Sign-then-Hash
	Slide 15: PQ/T Hybrid Confidentiality
	Slide 16: PQ/T Hybrid Authentication
	Slide 17: Security levels (PQC Algorithms: NIST)
	Slide 18: Key & ciphertext/signatures of PQC Algorithms on different security levels
	Slide 19: SPHINCS+ and its many variants (Simple only)
	Slide 20: Falcon vs Dilithium vs Sphincs+
	Slide 21: Challenges in Falcon's Signing Operations
	Slide 22: PQC vs Traditional KEMs/KEXs
	Slide 23: PQC vs Traditional Signatures
	Slide 24: Security Considerations - Cryptanalysis
	Slide 25: Security Considerations - Cryptographic Agility
	Slide 26: Hybrid Key Exchange : Bridging the Gap Between Post-Quantum and Traditional Cryptography
	Slide 27: Contributing to this document

