RPL, the IETF standard for routing in low power lossy networks, was designed to meet unusual constraints in terms of scale (high), device capabilities (limited), and link reliability and capacity (very low). To meet those constraints, RFC 6550 introduced a number of innovations with the use of anisotropic routing, stretched P2P path, autonomic properties, objective functions, multi-topology routing, and a distance-vector operation that is proactive in setup but reactive in maintenance. RPL is now being extended at one extreme with a fully ADHOC mode called AODV RPL, and a centrally controlled mode called Route Projection. This session will browse through the main features of RFC 6550 and the route projection work.
Pascal’s Bio:
The presenter, Pascal Thubert from Cisco, is a co-editor of RFC 8655 (the DetNet architecture), RFC 9030 (the 6TiSCH architecture), and the WIP draft RAW architecture, and well as the RPL routing protocol (RFC 6550), the 6LoWPAN Header Compression (RFC 6282) and Neighbor Discovery (RFC 8505 / 8928 / 8929) protocols.
In this IPv6 and 6LoWPAN Webinar, a detailed overview of the 6LoWPAN Adaptation layer will be given. Indeed, this webinar is dedicated on how 6LoWPAN enables to use of IPv6 over IEEE Std 802.15.4 networks. During this webinar, the following three objectives will be covered:
- First, the principles of IPv6 Header Format overview will be given, then the constraints that IPv6 presents over IEEE Std 802.15.4 technology are explored, and finally, an overview on 6LoWPAN Adaptation layer is introduced.
- The second objective is dedicated on 6LoWPAN header compression (i.e., RFC 6282) and IPv6 packet fragmentation mechanisms (i.e., RFC 4944) that allow the transmission of IPv6 packets over IEEE Std 802.15.4 radio links.
- The third and the last objective of this webinar is dedicated on standardized fragment forwarding approaches. This objective is split in two parts. In the first part, the two Frame Delivery modes (i.e., Mesh-Under and Route-Over) are described, while in the second part, an alternate approach called 6LoWPAN Fragment Forwarding (6LFF) is introduced, whereby an intermediate node forwards a fragment without reassembling the complete IPv6 datagram first (i.e., RFC 8930). Moreover, a 6LoWPAN Selective Fragment Recovery mechanism will be presented (i.e.,RFC 8931).
Georgios’s Bio:
Georgios Z. Papadopoulos (MIEEE) serves as an Associate Professor at the IMT Atlantique in Rennes, France. Previously, he was a Postdoctoral Researcher at the University of Bristol. He received his Ph.D. from University of Strasbourg, in 2015 with honors, his M.Sc. in Telematics Engineering from University Carlos III of Madrid in 2012 and his B.Sc. in Informatics from Alexander T.E.I. of Thessaloniki in 2011. Dr. Papadopoulos has participated in numerous international and national research projects on diverse networking verticals. He has received the prestigious French national ANR JCJC 2017 grant for young researchers. He has been involved in the organization and program committee of many international events, such as IEEE ISCC’20, IEEE DIPI’19, AdHoc-Now’18, IEEE CSCN’18, GIIS’18, IEEE ISCC’17. Moreover, he has been serving as Associate Editor for Wireless Networks journal and Internet Technology Letters since 2018. He is author of more than 60 peer-reviewed publications in the area of computer communications, networks and cybersecurity. He actively participates at the IETF standards organization with multiple drafts in the ROLL and RAW Working Groups. His research interests include Industrial IoT, 6TiSCH, 6lo, LoRa & LPWAN, Wireless Battery Management System, Smart Grid, Cybersecurity and Moving Target Defense. Dr. Papadopoulos has received the Best Ph.D. Thesis Award granted by the University of Strasbourg and he was a recipient of two Best Paper Awards (IFIP Med-Hoc-Net’14 and IEEE SENSORS’14).
Despite the general benefits experienced with converging data, mail, voice, and video over IP, a number of domains in Operational Technology (OT) including Industrial IoT, vehicular automation, professional audio, and so on, still rely on semi-proprietary technologies for their the network operations. This is because machine-to-machine communications require deterministic properties such as guaranteed worst case latency and jitter and high reliability that traditional IP, which is based on statistical multiplexing and reactive congestion management, cannot offer.
In recent years, new work at IEEE 802.1 TSN and at the IETF with 6TiSCH, DetNet, and RAW, propose an evolution to IP networks that enable those deterministic properties for well characterized flows, over initially wired and then wireless networks. This session will introduce the concept of deterministic networking and how it applies to IoT, keeping in mind that machines are not necessarily small and constrained, and that automation applies to large things such as trains and nuclear plants. The architectures behind DetNet, 6TiSCH, and RAW, how they relate and specifically how they can leverage IPv6, will be browsed at a high level.
Pascal’s Bio:
The presenter, Pascal Thubert from Cisco, is a co-editor of RFC 8655 (the DetNet architecture), RFC 9030 (the 6TiSCH architecture), and the WIP draft RAW architecture, and well as the RPL routing protocol (RFC 6550), the 6LoWPAN Header Compression (RFC 6282) and Neighbor Discovery (RFC 8505 / 8928 / 8929) protocols.
Microcontrollers have enabled adding processing and communication to many physical objects, but the result is not a simple copy of a general-purpose computing environment. Bringing these objects into the Internet requires attention to their specific constraints. Since 2005, the Internet Engineering Task Force (IETF) has been shaping Internet protocols towards the special requirements of such constrained devices, addressing a full stack from adaptation layers to the application layer, including security protocols. Looking at 17 years of standardization, what have we achieved, and what still needs to be completed to arrive at a true Internet of Things?
Carsten Bormann likes bringing the Internet to odd places. Honorary professor for Internet Technology at the Universität Bremen, he is a member of its Center for Computing and Communications Technology (TZI). His research interests are in protocol design and system architectures for networking. In the IETF, he mainly has been working on bringing Internet Technology to new links, applications, or radios. Since 2005, he has co-chaired, initiated, or co-authored many of the IETF efforts that now make up its Internet of Things (IoT) stack: he initiated the IETF work on Constrained RESTful Environments (CoRE) and the CoAP (Constrained Application) Protocol and co-chaired the IETF CoRE WG for its first ten years. Most recently, he launched the Thing-to-Thing Research Group (T2TRG) in the Internet Research Task Force (IRTF). He has authored and co-authored 48 Internet RFCs, which have 439 citations in other Internet RFCs.

Connections is being held April 2-8, 2022, shortly after the IETF 113 meeting. It is a fully online event created jointly by IIESoc & INTC. The fifth day will include the following presentations:
- Intro to SDOs and SIGs that can influence enterprise networks by Barbara Stark
- Testing Wi-Fi performance by Lincoln Lavoie
- Device Management by Jason Walls
- Private 5G Network by Satish Jamadagni

Connections is being held April 2-8, 2022, shortly after the IETF 113 meeting. It is a fully online event created jointly by IIESoc & INTC. The fourth day will include the following presentations:
- IoT Landscape by Carsten Bormann
- IoT MOOC Kickoff by Pascal Thubert & Georgios Z. Papadopoulos
- Panel Discussion on IoT deployments with Carsten Bormann, Pascal Thubert, Georgios Z. Papadopoulos, Rahul Jadhav, Ravi Shiroor, Sundar Ramakrishna, Shwetha Bhandari (Moderator)

Connections is being held April 2-8, 2022, shortly after the IETF 113 meeting. It is a fully online event created jointly by IIESoc & INTC. The third day will include the following keynote presentations:
- Lightweight Mixnets by Martin Thomson
- Semantic Routing by Adrian Farrel
- Computation in the Network (COIN) by Dirk Trossen

Connections is being held April 2-8, 2022, shortly after the IETF 113 meeting. It is a fully online event created jointly by IIESoc & INTC. The second day will include the following presentations:
- Introduction to IPv6 Extension Headers by Nalini Elkins
- An Update on IPv6 Fragmentation by Geoff Huston
- Panel Discussion on IPv6 Extension Headers with Eric Vyncke (Moderator)

Connections is being held April 2-8, 2022, shortly after the IETF 113 meeting. It is a fully online event created jointly by IIESoc & INTC. The first day will include the following keynote presentations:
- IPv6 — past, present & future by Bob Hinden
- Going Dark — catastrophic security and privacy losses due to loss of visibility by managed private network operators by Dr. Paul Vixie
- TBD by Ron Bonica

Connections is being held April 2-8, 2022, shortly after the IETF 113 meeting. It is a fully online event created jointly by IIESoc & INTC. The pre-event introduces participants to the IETF culture and how to contribute to IETF.
- Introduction to IETF at a high level – Dhruv Dhody
- Chat with long term IETFers – Adrian Farrel, Allison Mankin, Fred Baker, Praneet Kaur (Moderator)
- Chat with IETF participants from India – Tirumaleswar Konda, Abhijan Bhattacharyya, Gurshabad Grover, Ketan Talaulikar, Mohit Tahiliani (Moderator)
- Experience sharing from IETF Newcomers – Ameya Deshpande, Abhishek Kumar
- How to write internet drafts with Markdown/GitHub – Barbara Stark
